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Abstract— Observing human motion patterns is informative
for social robots that share the environment with people. This
paper presents a methodology to allow a robot to navigate
in a complex environment by observing pedestrian positional
traces. A continuous probabilistic function is determined using
Gaussian process learning and used to infer the direction a
robot should take in different parts of the environment. The
approach learns and filters noise in the data producing a smooth
underlying function that yields more natural movements. Our
method combines prior conventional planning strategies with
most probable trajectories followed by people in a principled
statistical manner, and adapts itself online as more observations
become available. The use of learning methods are automatic
and require minimal tuning as compared to potential fields
or spline function regression. This approach is demonstrated
testing in cluttered office and open forum environments using
laser and vision sensing modalities. It yields paths that are
similar to the expected human behaviour without any a priori
knowledge of the environment or explicit programming.

I. INTRODUCTION

As robots and people coexist in the same environment,
the study of human motion patterns becomes increasingly
important. The social interaction between humans and robots
has been the object of numerous studies [1]–[3]. It presents
significant challenges and has proved vexing for numerous
reasons – not the least that such interactions are often
qualitative and difficult to measure.

However, human locomotion is incredibly informative.
Analysing the points people transit not only informs where to
navigate, but also improves interaction through predictabil-
ity [4]. Consider, for example, navigating around spilled cof-
fee. Trying to sense this is incredibly difficult, yet inferring
it from the cues of people walking around it is relatively
much easier. That is, generalising the crowd’s behaviour
leads to better decision making rules and improves the safety
of humans and robots. This, however, is complicated as
the variability of human motion patterns is immense even
in structured environments such as offices and corridors.
Estimating and modelling the uncertainty in these motions
from noisy sensors is also challenging particularly due to
occlusions and misdetections.

In this paper we study how robots can learn and update
a potential function for an environment by observing the
motion pattern of people and then consider its use for
navigation. Given a set of traces from pedestrians walking in
a populated area, we seek to learn a function that maps any
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arbitrary location to a direction of travel – we call this the
navigational map. This navigational map reflects behaviour
in a statistical manner and helps the robot to understand
the environment. For example, people (almost) always avoid
obstacles when walking. By learning how humans walk in
a closed area, a robot can avoid obstacles without relying
solely on perception. Assumed social boundaries such as
personal workspaces or the area between a television and a
viewer often mean that the shortest path is not always ideal.

Integrating such behaviour into the path planner is chal-
lenging as the definitions of preferred spaces are mostly
qualitative, hence making metrics (and sensing) difficult [5].
However, learning the motion pattern can lead to trajectories
that incorporate an abstract level of reasoning on the environ-
ment without explicitly modelling the underlying principles
influencing them.

The process of observing and tracking pedestrian move-
ments has received considerable attention in the robotics
community and includes approaches based on a variety of
sensing modalities including monocular vision [6], laser [5],
and inertial measurement [7]. Human navigation models are
primarily focused on steering and obstacle avoidance. [8],
[9] and still rely on direct measurement (e.g., optical flow
[10]). The suggested continuous curvature dynamic models
complement this work by providing a more informed initial
navigation map. While the process of extracting and tracking
people is non-trivial (particularly when multiple people are
moving), this work is concerned with using these trajectories
for informing robot navigation.

Some skills can be transferred to the robot using imitation
strategies [11]–[13] where sequences of state action pairs
are recorded during the demonstration of the desired robot
behaviour to derive a policy that reproduces the demonstrated
skill. Others skills can be learned efficiently by the robot
alone using machine learning methods, such as reinforcement
learning (RL) [14]. However RL has a high sensitivity to the
learning rate, requires supplementation with learning policies
such as Expectation Maximization (EM) [15], [16], and often
requires significant numbers of training examples. Further, it
has high computational costs especially in the continuous
domain and high dimensional space.

Here, we rely on a machine learning technique to develop
a model of how people traverse the environment. Using
traditional path planning techniques as a prior, the resulting
navigational map emulates human-like motion trajectories
in a sound, statistical manner. In order to learn this map
from pedestrians’ traces, we exploit the benefits of Bayesian
learning and, in particular, a popular regression technique
known as a Gaussian process [17].
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A key aspect of this paper is the manner in which the
problem is formulated. By modelling human motions as a
deviation from a prior path plan, it becomes possible to
infer preferred routes (and subsequently areas of repulsion)
all within the Bayesian statistical framework.

This paper is organised as follows. Section II introduces
the problem formulation and describes the algorithms devel-
oped and illustrate them with a pedestrian example. Section
III details the theory behind the approach and Section IV
presents experimental results using real datasets. Finally,
Section V provides conclusions.

II. PROBLEM FORMULATION

Intuitively, the proposed approach seeks to produce a
navigational map, namely a function which maps a location
to a normalized velocity in a manner that incorporates the
motion patterns of people. This would enable the trajectory
taken by a person travelling to a destination to be estimated
at any location allowing the robot to navigate in a human-like
manner. Essentially, this is achieved by learning a continuous
function that describes how people deviate from some prior
belief on the path to a destination. This deviation function, Ψ,
is combined with the prior navigational map, H , to produce
a navigational map that captures the general trends of how
humans traverse the environment.

A. The Prior Map

The prior map, H , could potentially be derived from a
wide variety of navigational techniques described in the
literature, e.g., potential fields [18] or sampling-based algo-
rithms [19]. It can be viewed as a method of incorporating
expert knowledge about the environment, such as perhaps the
location of obstacles, into the posterior map. In this paper, a
naı̈ve prior is adopted to illustrate the ability of the proposed
technique to capture social navigation trends in the map
despite very little prior understanding of the environment.
Essentially, the prior direction at any location, x∗, on the
map is the arctangent of the line joining that location to the
destination, xD. More formally:

H(x∗) = arctan(∇(xD − x∗)). (1)

B. Learning the Motion Patterns of People

Generally speaking, our technique can be divided into two
main segments. Initially, the outputted paths of a people
tracking algorithm such as [20], [21] are used in an offline
learning phase to estimate Ψ for a given destination. Sub-
sequently, a online algorithm uses the generated function to
traverse the environment in a way that reflects the tendencies
of people.

For the remainder of this section, data obtained by simulat-
ing the path traces of pedestrians traversing a zebra-crossing
is employed as an illustrative example to help detail the steps
of our approach and highlight some of its advantages (see
also Fig. 1).

1) Offline Phase: Learning the Deviation Function:
The procedure for the offline learning phase is detailed in
Alg. 1. Each navigational map is conditioned on a specific
destination. Consequently, only observed path traces leading
to the goal are relevant to the problem. A KD-tree ball
search can be used to identify path traces ending at, or
passing through, the objective. Fig. 1(a) shows the traces
that would be chosen, represented in blue, when generating
a navigational map for the indicated destination. Fig. 1(b)
reveals the observed locations of the pedestrians, X , that
were used to create the selected traces.

Algorithm 1 Learn Deviation Function, Ψ(θ)
Input: H:- Prior Map, xD:- Destination, Path Traces
Output: θ:- Parameters of Ψ

1: Identify Path Traces leading to xD
2: Determine Tangent of identified Path Traces at each

observation location, X .
3: Calculate target vector, y:

Ψ(X) = Tangent(X) − H(X)
4: Train Gaussian process using training data (X , y) to

learn the parameters, θ, of the underlying Deviation
Function.

(a) (b)

Fig. 1. Plan view of zebra-crossing with simulated pedestrians using it
to get from one sidewalk to another. (a) Pedestrian’s path traces. (b) The
observed locations of the pedestrians used to generate the traces

The training data’s target vector, y, used for learning the
underlying deviation function is obtained from the selected
raw data by initially approximating the trajectory of the
pedestrians at each observed location and subtracting it from
some predetermined prior.

An important advantage to our approach is that the form
of the prior map can be entirely user-specified. It can range
from complex to naı̈ve solutions (no map). In this case, the
prior’s trajectory is always directed towards the destination,
but it could also take on a more complex form. Fig. 2(a)
compares the prior and the path trace trajectory at every
observed location of the pedestrians. From this, training data
for Ψ, such as that shown in Fig. 2(b), can be determined
using Step 3 of Alg. 1.

A Gaussian process, GP, is then trained to estimate a non-
parametric probabilistic model of Ψ. The predictive mean
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(a) (b)

Fig. 2. (a) Comparison between prior and trace trajectory. (b) Training
data passed to GP: location (metres) versus deviation angle (degrees)

Fig. 3. (a) Grid samples from the predictive mean, shown in degrees, and
(b) variance functions of Ψ.

and variance functions of our example’s deviation model
were sampled and are shown in Fig. 3. The predictive
mean represents the model’s estimate of how much the
human motion pattern deviates from the expected direction
of navigation (the prior). The associated variance quantifies
the model’s confidence in each prediction.

2) Online Phase: Navigating to the Destination: Once a
model for Ψ has been trained, it becomes possible to predict
the motion pattern of people at any location, x∗, in the
environment and to obtain an associated variance on each
prediction. Alg. 2 describes how such a model can be used
to navigate a holonomic robot towards the destination in a
human-like manner.

Algorithm 2 Navigate to Destination, xD
Input: H , xD, θ, x∗

1: while x∗ 6= xD do
2: Direction(x∗) = H(x∗) + Ψ(x∗, θ)
3: Move forward along Direction(x∗)
4: end while

The robot queries the probabilistic model with its current
location and receives an estimate of the deviation angle. This
is then added to the original prior to produce a prediction of
the direction that a human would take in that position. The
robot moves along the trajectory given by the navigational
map until the destination is reached.

Fig. 4. Comparison between (a) prior and (b) the proposed navigational
map after being trained using human motion observations in the region.

Fig. 5. (a) Routes taken to destination using the posterior navigational
map for different starting locations. (b) 2σ boundary of trajectory prediction
along each route measured in degrees (right).

Figure 4 compares the prior navigational map with the
posterior map produced after incorporating the information
gathered from observing how people move through the envi-
ronment. The social context of the zebra-crossing is reflected
in the posterior map and it has the effect of channelling the
flow from left to right through the designated crossing zone.

Figure 5 demonstrates the routes that robots with various
starting locations would take to reach the destination using
Alg. 2 on the trained navigational map. The resulting paths
are in keeping with expected social context – they navigate
as we might expect a person would would take in the same
situation.

C. Incorporating Predictive Uncertainty

An important output of a probabilistic approach is the
predictive variance. This measure of uncertainty manifests
itself in the navigational map as a force that indicates the
trajectories to those of the prior map in areas where there is
insufficient observations to make a reliable prediction on the
motion pattern of people. Examining the region below the
zebra-crossing in Fig. 5 where no pedestrians are observed,
the model is correctly uncertain about the value of Ψ here
and thus the trajectories of the navigational map return to
the prior.
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The variance could also be used to influence the level of
caution that the robot exercises as it travels towards the des-
tination. Areas of high uncertainty generally correspond to
regions where few or no (pedestrian) observations. Regions
of high variance could be used as an indication that the robot
should adjust its speed appropriately or increase the computa-
tional power dedicated to perceiving its surroundings. Figure
5(b) compares the 2σ boundaries of the three sample routes.
As expected, a region where no pedestrians were observed
yields a path with the highest uncertainty (e.g., Path C).

A variation to the proposed approach would be to use the
variance as a repulsive force in the navigational map. This
would have the effect of causing the robot to move towards
regions where it has observed pedestrians and is more certain
about the value of Ψ.

D. Integrating New Observations into the Model

After the training phase, incorporating additional observa-
tions into the model can be done online. The theory behind
this procedure is detailed in Section III. Fig. 6 illustrates the
effects on the outputs of our method when the observation
of a jaywalker’s path trace is integrated into the map.

Interestingly, the trajectories of the navigational map be-
low the zebra-crossing adapt to reflect the behaviour of a
person walking in that region (i.e., to get to the other side of
the road as directly as possible) compared to the trajectories
in Fig. 5. Importantly, however, the variance in this region,
although lower than areas where no observations were made,
is still higher than the section over the zebra-crossing and the
route preferred by the majority of pedestrians.

III. LEARNING MECHANISM

The proposed method is based upon the Gaussian process’
ability to predict p(Ψ|x), where Ψ is the deviation taken by
people from the prior trajectory at x, a physical location
within the environment. The GP is used to fit a likelihood
function to the training data

{
xi, yi

}
i=1→N where N is

the number of training points and yi, the training output
or target data, corresponds to the angle between the prior
and the tangent to the path taken by the person at a specific
location. The resulting continuous function can then be used
to interpolate between data points allowing predictions to be
made on the human motion patterns over the entire region
using the well understood Bayesian statistical framework.

A. Gaussian Process Fundamentals

Several important characteristics of the Gaussian process
makes it well suited to our intended application.
• Continuous models: GPs do not require a discretised

representation of an environment. Similarly, they are
able to predict the motion pattern of people at arbitrary
locations.

• Predictive Variance: GPs provide uncertainty estimates
for predictions at any set of locations. This uncertainty
takes into account the local density of observations and
their noise level.

Fig. 6. Series of images showing the changes to the navigational map
when a new observation is made of a pedestrian crossing the road without
using the zebra-crossing. Clockwise from top left: Observed path traces.
Posterior navigational map. Predictive variance function for Ψ. Predictive
mean function for Ψ.

• Marginal Likelihood: The parameters of the model are
marginalised during the training. This eliminates the
need for any hand-tuning.

• Flexibility: GPs are non-parametric regression models
and can thus approximate an extremely wide range of
motion models.

The Gaussian process itself can be viewed as a distribution
over an infinite number of possible functions thus performing
inference takes place directly in the space of functions. By
assuming that all deviation angles, indexed by their corre-
sponding location in the environment, are jointly Gaussian,
we obtain

Ψ(x∗) = N (µ, σ2), (2)

where

µ = k>(x∗, X)>
[
K(X,X) + σ2

nI
]−1y, (3)

σ2 = k(x∗, x∗)− k(x∗, X)
[
K(X,X) + σ2

nI
]−1

k(X, x∗).
(4)

Here, x∗ refers to a query or test location, X the training
inputs, σ2

n the variance of the global noise and K is the
covariance matrix. The elements of the covariance matrix
Kij = k(xi, xj) are defined depending on a covariance func-
tion k parameterised by hyperparameters. In this application,
the hyperparameters’ and σn’s optimal values for the datasets
are derived by maximising the log marginal likelihood using
a simulated annealing algorithm followed by quasi-Newton
gradient ascent.
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By setting E[Ψ(x∗)] = 0 during training and inference,
the predicted deviation will naturally revert back to the
prior in areas lacking sufficient observations. An extensive
explanation and derivation of the Gaussian process can be
found in [17].

B. Training the Covariance Function

A number of commonly used covariance functions were
tested on a variety of datasets of which the Matérn class
of functions, Eq. 5, consistently led to the highest marginal
likelihoods.

kMatern(x, x∗) = σf
21−ν

Γ(ν)

(√2νr
l

)ν
Kν

(√2νr
l

)
(5)

where r is the Euclidean distance between inputs x and x∗
while the trainable hyperparameters l and σf represent the
lengthscale and amplitude, respectively. Kν is a modified
Bessel function and ν is shape parameter that regulates the
smoothness of the interpolation. As special cases, ν →
∞ equates to infinitely differentiable squared exponential
covariance function and ν → 1

2 corresponds to the sharper
exponential covariance function [22]. Cross validation led to
the conclusion that ν = 5

2 produced the best results for the
examined datasets.

The hyperparameters loosely correspond to the style of
motion adopted by the pedestrians in the environment.
Consequently, they appears to be generalise well to similar
scenarios such as a different flow in an office block or another
area of a park provided an identical method for deriving the
prior is used.

C. Storing and Updating the Inverse Covariance Matrix

A traditional drawback to the Gaussian process is its
long computational time which makes it unsuitable for many
online operations where realtime performance speeds are re-
quired. The GP’s runtime complexity of O(N3) is primarily
as a result of the requirement to invert the covariance matrix,
K, in equations 3 and 4.

Fortunately, the elements of K are independent of query
points. Consequently, its inverse can be precomputed and
stored for use in Alg. 2 thus eliminating the computational
bottleneck during online use. Additional observation loca-
tions can be subsumed into K−1 using the matrix inversion
lemma and submatrix inversion principle [23].

IV. RESULTS

The proposed approach was tested on a number of dif-
ferent datasets. Here we present the results from two such
evaluations, namely the UTS RobotAssist Project [24] and
the Edinburgh Informatics Forum Pedestrian Database [6].

A. UTS RobotAssist Dataset

The experimental setup involved two stationary SICK
LMS-200 laser rangefinders, shown with blue dots in 7(a),
positioned to cover a combined area of approximately 50 m2

of a typical office environment. The path traces of passing
employees were extracted using a Hidden Markov Model
people tracking algorithm [25]. Trajectories leading to a

chosen destination, indicated by the red star, were selected
as inputs to our algorithm, Fig. 7(c).

Again, the naı̈ve potential function described in II-A is
used as the prior map, Fig. 7(b). The target vector, Fig. 7(d),
is obtained using Line 3 of Alg. 1, enabling Ψ to be learnt
through the GP framework. Samples from the predictive
mean and 2σ functions are shown in Fig. 7(e) & (f).

The posterior navigational map, represented as a quiver
plot in Fig. 8, merges the observations of path traces into
the prior map to generate more socially-informed routes to
the destination. Three typical starting locations were chosen
as inputs to Alg. 2 and their resulting paths were plotted.

An important advantage to incorporating the motions of
people into the navigational map is the ability to indirectly
sense obstacles that may be occluded or even undetectable
to the robot’s sensors. The large table on which one of the
rangefinder’s is placed in Fig. 7(a) close to the center of the
image is below the sensor’s plane and hence does not appear
in the laser returns plotted in Fig. 7(b) & (c). Observing that
people avoid this area leads to trajectories like Path C which
also circumvent the obstacle without ever requiring to reason
about the boundaries or type of the obstruction. Although in
this case the obstacle is quite tangible, our approach would
just as easily handle more abstract obstructions such as a
restricted area due to a slippery surface or paths that may
impinge on the work areas of other people.

A key feature of the Gaussian process is its capacity to
infer the most likely value of the Ψ at any point in the
map based on the trends of observed motion patterns in the
region. The benefit of this is clearly illustrated in the region
occluded to both rangefinders - around x∗ = [2, 3.5]m in
Fig. 7(c). Despite a lack of path traces in this area, the GP
correctly predicts the most likely trajectory of pedestrians
in the vicinity. Crucially, an associated variance is also
produced for each prediction and can be used as an indicator
of the caution that should be exercised in each particular
region. The second graph in Fig. 8 illustrates the 2σ boundary
for each of the sample paths. The area occluded from both
sensors is made apparent by the large peak in uncertainty
approximately halfway along the curve of Path A.

Similarly, the variance associated with the planned trajec-
tory of Path C is initially quite high due to a low density
of observations in the region as only 2 pedestrians were
observed here. However as the trajectory brings the robot
into the more populated corridors, the uncertainty on the
predicted value of the deviation from the prior falls to within
a 2σ boundary (of ≈3 degrees).

B. Edinburgh Informatics Forum Pedestrian Database

The database consists of a large set of detected pedestrians
walking through the Informatics Forum at the University of
Edinburgh, Fig. 9(a), and has been gathering data on a daily
basis since August 2009. The method of data acquisition
involves a fixed camera suspended 23 metres above the
floor that records the location of tracked targets on a frame-
by-frame basis. The tracked trajectories of a few hundred
detected targets are shown in Fig. 9(b).
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Fig. 7. Top row: (a) Occupancy grid of office area - positions of laser rangefinders marked in blue. (b) Prior navigational map - determined using Equation
1.(c) Path traces of pedestrians detected by lasers. All axes are in measured in metres. (b) and (c) also show stationary objects detected by the sensors.
Bottom row: (d) Training data passed to GP - target vector is measured in degrees. (e) Samples from the predictive mean function (middle) and (f) 2σ
boundary function of Ψ.

Fig. 8. Sparsely sampled quiver plot of the posterior navigational map with
examples of resulting routes to the destination taken from three different
starting locations (top). 2σ boundary (degrees) vs. fraction of route travelled
for each sample route (bottom).

The posterior navigational map shown in Fig. 9(c) is
generated from data gathered on a randomly selected date.
The destination that this particular map was conditioned on
is indicated by the red star in the lower portion of Fig. 9
(b) & (c). For illustrative purposes, four sample trajectories
have been plotted using different starting locations. One area
where people deviate strongly from the prior prediction is at
the bottom of the image where a staircase blocks a direct
line of travel. As Path A demonstrates, this deviation is also
learnt by our algorithm and incorporated into the navigational
map. Another interesting pattern captured by the proposed
technique is the elongated S-shaped trajectory which was
seen to be adopted by many pedestrians when moving from
the top left of the image to the destination, as indicated by
Path B.

The forum itself is a wide open area which differs con-
siderably from the more confined spaces of the previous
dataset. This fact is reflected in the smoother trajectories of
the pedestrians and consequently in the longer length-scales
learnt by the covariance function. An important outcome
resulting from this smoother motion pattern is that the GP
is more confident at inferring the value of the deviation
function in regions far from observed traces compared similar
distances in the office dataset. Examining the uncertainty
contours in Fig. 9(c), it can be seen that the variance function
rises much more gradually to its maximum value in areas
lacking in observations relative to Fig. 7(f).

C. Cross-Validation of Results

A fundamental requirement of the proposed algorithm is
its ability to accurately model human-like trajectories in
different environments. The capacity of our technique to
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Fig. 9. Edinburgh dataset (a) Plan view of forum. (b) Subset of tracked trajectories (c) Posterior navigation map (quiver plot), based on data from
September 10th 2009, with uncertainty contours and their associated colour bar superimposed. Four sample trajectories from typical starting points are also
included. Uncertainty is measured in degrees (2σ boundary). The axes of the graph correspond to pixel numbers in the image. Each pixel has a width of
24.7 mm.

emulate such trajectories was tested using cross-validation
on both datasets. Table IV-C summarises the results of our
analysis. For the UTS RobotAssist dataset, the observed
trajectories were divided equally into a training set and a
validation set. Path traces from five different days were used
in testing the algorithms model learnt for the Edinburgh
Informatics Forum dataset.

TABLE I
CROSS-VALIDATION RESULTS

σ Limit 2σ Limit
UTS RobotAssist 75.4 95.3
Edinburgh Informatics Forum 61.3 84.8

The values in the σ and 2σ columns represent the per-
centage of test points that fell within one and two standard
deviations of the prediction, respectively. Indicatively, the
models learnt for both datasets explain the validation cases
quite well, particularly the RobotAssist dataset. This is most

likely due to the fact that its narrow walkways confined the
range of motion hence reducing outliers. It was found that
the majority of outliers in the Edinburgh dataset leading to
the slightly lower than expected percentage of traces falling
within the 2σ limit was as a result of pedestrians who tended
to wander aimlessly around the open area before choosing a
destination.

V. CONCLUSIONS

In this paper we have introduced a powerful tool for
incorporating the motion patterns of people into the tra-
jectories of robots. We have demonstrated its ability to
address several important challenges currently facing robotic
navigation such as perceiving obstacles that are traditionally
difficult to observe and motion planning in a manner that
conforms to social assumptions. The proposed approach
is illustrated and tested on a variety of datasets which
demonstrate the algorithm’s capacity to encapsulate social
context in navigation.
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Handling this problem within the framework of the Gaus-
sian process avoids the necessity to discretise the world or
the resulting trajectories. Crucially, an associated predictive
variance exists along each trajectory which can be used to
dictate the the level of confidence the robot should have
in the model for each region of the map. An additional
benefit of adopting a Bayesian approach is the ability to learn
the sensor noise levels and characteristics of the underlying
function in tandem through the optimisation of the marginal
likelihood function without the requirement of hand-tuning
the model’s parameters.

This algorithm is designed primarily for robots with
human-like motion constraints. However, with further work,
it may be possible to design as path planner that uses both the
navigational map and the variance map to identify potential
paths for vehicles with more constrained dynamics.

We believe that this work is an initial step towards inte-
grating conventional decision making algorithms and path
planning with the complex decision making processes in
humans and their social behaviours.
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